
LupSeat - A Smart Seat Assignment Generator
Hiroya Gojo, Joël Porquet-Lupine

University of California, Davis. Dept of Computer Science

Introduction

Graphical Interface

Output Seating ChartAlgorithms and Methodology
When students are allowed to sit next to whoever 

they want in an exam, it may increase the chance of 
plagiarism and cheating. On the other hand, 
assigning random seats to students prior to exams is 
time-consuming, especially for large classes, since 
instructors have to assign seats by hand. There are 
also risks of clerical errors, such as forgetting to 
assign a student. Existing software solutions only 
focus on relatively small classrooms. The goal of 
LupSeat is to automate the seat assignment process 
in an easy way to solve this problem. Using an 
algorithmic approach simplifies the process of 
spacing out students and minimizes the chance of 
errors. LupSeat is easy for instructors to use and 
instructors only need to provide student information 
and the representation of the room layout.

While developing LupSeat, two fundamentally 
different algorithms were compared, which I will 
call chunk increase algorithm and consecutive 
divide algorithm. The former is a bottom up 
algorithm, with the latter is a top down algorithm. 
The goal of the algorithms employed are 
essentially to minimize the size of the chunk of 
students so that the average number of students 
sitting next to each other is minimized. 

The intuition with the chunk increase algorithm is 
to first start off with a chunk size of 1, that is, all 
students would have two empty seats around 
them. If all the students do not fit in the room with 
this method, the chunk size is increased by 1, and 
continues until all students fit in the room.

The intuition behind the consecutive divide 
algorithm is that the room initially starts out with 
the largest chunks possible, and for each empty 
seat, the current biggest chunk is split into smaller 
chunks. A backtracking algorithm was used where 
if the chunk needs to be split, it would first be 
patched together into the original large chunk, then 
divided again evenly. 

By creating a heuristic score (average size of 
chunk in a room) to rank a room layout and 
running a script to run each algorithm many times, 
the consecutive divide algorithm was shown to 
consistently outperform the others. 

LupSeat is very customizable in its output. 
Several files are created including a graphical 
room layout image, a csv file with all the 
student/seat information, and the graphical 
student to seat assignment image. The image 
sizes are able to modified according to standard 
paper sizes, and the order of the students can 
be sorted based on their name, ID, or by their 
seat position. A full description of LupSeat’s 
options are available in the documentation at 
https://gitlab.com/luplab/lupseat.

LupSeat only requires the user to specify the list 
of students and the layout of the room. The 
graphical interface, built with Tkinter, is an easy 
way to run LupSeat without having to navigate the 
command line. Both the GUI and command line 
interface provide various customizable options to 
tune the output exactly as needed.

https://gitlab.com/luplab/lupseat

