
LupSeat: A Randomized Seating Chart Generator to Prevent
Exam Cheating

Joël Porquet-Lupine
jporquet@ucdavis.edu

Department of Computer Science
University of California, Davis

Davis, California, USA

Hiroya Gojo
Department of Computer Science
University of California, Davis

Davis, California, USA

Philip Breault
Department of Computer Science
University of California, Davis

Davis, California, USA

ABSTRACT
Randomly assigning seating is an effective way to prevent exam
cheating. Our software tool, LupSeat, is a seating chart generator
which is packed with features and can handle large classrooms.
Based on a simple, textual representation of the classroom and a
CSV-formatted student roster, the tool algorithmically ensures that
students are assigned to random seats and get evenly spaced out. It
can also account for other factors in the seating assignment, such
as accommodating accessible seating needs or hand dominance,
and it offers highly customizable, graphical output charts.

LupSeat provides both command line and graphical user inter-
faces for all major platforms and is available at https://gitlab.com/
luplab/lupseat.

KEYWORDS
Random seating chart; Cheating prevention; Large classes

1 BACKGROUND
Cheating has been a concern for CS instructors for decades [1].
In their 2015 study [3], Levitt and Lin found strong evidence of
cheating by at least 10 percent of the students in the exams of
a general science course at a top university. However, they also
found that when seating locations were randomly assigned –and
monitoring was increased– cheating would virtually disappear.

Randomly assigning seating locations by hand can be a time-
consuming task, usually reserved for very small classes. Existing
software-assisted solutions are not meant to support large classes
either, as they often involve significant human intervention or offer
only basic features [2]. For example, instructors may be required to
manually draw the classroom or the software tool may handle only
grid-shaped classrooms, both of which are too limiting for real-life
lecture halls at large universities. Besides, no tools are currently able
to take into account special cases, such as automatically assigning
left-handed seats to left-handed students.

2 TOOL OVERVIEW
Our tool, LupSeat, aims to bridge this gap. Based on a simple, textual
representation of a classroom, and a CSV-formatted student roster,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9071-2/22/03.
https://doi.org/10.1145/3478432.3499139

the tool efficiently automates the creation of a randomized seating
chart where students are evenly spaced out when possible.

In the student roster input file, students are defined by at least
their name (first and last) and their student ID number (SID). The
textual representation of a classroom allows any configuration
of contiguous seats and aisles to be described, making it easy to
represent even large lecture halls. As a result, the tool produces a
CSV-formatted output file which, by default, gives the list of seat
number to SID number associations. It also produces two graphical
output files which can be printed for students to see. The first one is
a graphical version of the seat number to SID number associations,
while the other is a visual representation of the classroom.

The tool supports many advanced features. For example, it offers
a graphical user interface; it supports all major platforms (Linux,
MacOS, and Windows); it allows the possibility to specify which
seats can accommodate students who need accessible seating or
left-handed students, as well as the dominant hand for each student
and if they require accessible seating; it allows the instructor to
provide a third input file that lists pairs of students who should not
be seated next to one another (e.g., because they have partnered in a
class project before or have belonged to the same study group). This
tool is also highly customizable as, for example, the generation of
the output files can be configured to show the associations between
seat number and any part of the students’ information. This feature
can be useful to protect the confidentiality of SID numbers by only
listing their last few digits in the seating chart.

3 FUTUREWORK
We are currently working on a string of improvements for LupSeat,
which include smoothing out the installation process for the dif-
ferent platforms and revamping the design of the graphical user
interface, among others. In order to increase the accessibility of the
tool, we are also planning to start a database containing the textual
descriptions of all the lecture halls on our university campus, and
we will engage in outreach efforts at other university campuses to
have their lecture halls mapped as well.

REFERENCES
[1] William Dodrill, Doris K. Lidtke, Cynthia Brown, Michael Shamos, Mary Dee Har-

ris Fosberg, and Philip L. Miller. 1981. Plagiarism in Computer Sciences
Courses(Panel Discussion). In Proceedings of the Twelfth SIGCSE Technical Sym-
posium on Computer Science Education (St. Louis, Missouri, USA) (SIGCSE ’81).
Association for Computing Machinery, New York, NY, USA, 26–27. https:
//doi.org/10.1145/800037.800956

[2] Instructure Inc. 2021. Canvas LMS. https://www.instructure.com/canvas
[3] StevenD Levitt andMing-Jen Lin. 2015. Catching Cheating Students. Working Paper

21628. National Bureau of Economic Research. https://doi.org/10.3386/w21628

https://gitlab.com/luplab/lupseat
https://gitlab.com/luplab/lupseat
https://doi.org/10.1145/3478432.3499139
https://doi.org/10.1145/800037.800956
https://doi.org/10.1145/800037.800956
https://www.instructure.com/canvas
https://doi.org/10.3386/w21628


4 ADDITIONAL CONTENT
4.1 Tool usage example
Let us consider a realistic (but fictitious) example with a 25-student
class and a 38-seat classroom.

Figure 1 shows an excerpt of the CSV-formatted student roster
file (on the left side), in which the first student –"Carree Heggs"– is
specified to have a preference for a left-handed seat and the second
student –"Ludvig Quinane"– is specified to require a special needs
seat. The Figure also shows the textual class description file (on the
right side), which makes it easy to describe blocks of adjacent seats
within each row, as well as qualifiers for certain seats or ranges of
seats (b for broken seats, l for left-handed seats, and s for special
needs seats).

Figure 1: Example of student roster and classroom descrip-
tion

Running the tool as shown in Figure 2 will produce three output
files that show the seating chart in various ways. The format argu-
ment --fmt on the command line allows the instructor to customize
how the association between seat numbers and students is shown.
In the example below, only the students’ initials and the last three
digits of their SID number will be displayed.

Figure 2: Running the tool

Figures 3 and 4 shows excerpts of the two graphical output files
generated by the tool. As we can see in Figure 3, the left-handed
student was assigned to a left-handed seat (C3), and the special
needs student was assigned to a special needs seat (C5); Figure
4 visually shows that the students have evenly spaced out in the
classroom and the broken seat (A3) has not been assigned, .

4.2 Seat assignment algorithms
An interesting part of the tool is the seating assignment algorithm.
Two different algorithms were implemented and tested, which we
called chunk increase and consecutive divide.

Chunk increase is a bottom-up algorithm, where the initial step is
to try and place students in such a way that they all have an empty
seat (or an aisle or a wall) on either side. This initial configuration
represents a chunk size of one. If the configuration does not fit the
number of students in the class, then the chunk size is incremented,
which now allows two students to sit next to one another. The

chunk size is successively incremented until all students fit within
the classroom.

Chunk divide is a top-bottom algorithm, where the initial step
is to consider all the available seats in the classroom. As long as
the number of available seats exceeds the number of students, then
empty seats are successively introduced in order to split the biggest
chunks of adjacent seats. To avoid simply splitting the biggest chunk
into two smaller chunks (with a empty seat in the middle), which
could otherwise lead to unbalanced chunks within the same row
of seats, a backtracking phase is used. Before an additional empty
seat is introduced to split the biggest chunk, the entire row is first
reconstituted and then re-divided evenly.

Regardless of the algorithm, special needs students and left-
handed students are assigned to the appropriate seats first.

Thorough testing on 500 randomly generated rosters and class-
room configurations showed that the chunk divide algorithm con-
sistently performed better, which is why we chose it as the default
seating assignment method.

Figure 3: Seating list

Figure 4: Classroom view


	Abstract
	1 Background
	2 Tool overview
	3 Future work
	References
	4 Additional content
	4.1 Tool usage example
	4.2 Seat assignment algorithms


