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ABSTRACT
LupIO is a comprehensive and open-source collection of education-
friendly I/O devices. This collection defines the interfaces of the
most common devices found in modern RISC-based computers,
and makes it possible to build complete systems using only LupIO
devices, even complex multicore systems.

Each device interface is designed to be simple and clear, with an
optimal balance between features and complexity. The registermaps
exposed by the devices are neatly organized by type and arranged
consistently across devices. Developing implementations of LupIO
devices, as well as corresponding device drivers, is meant to be
straightforward and accessible to students at the undergraduate
and graduate level.

As a proof of concept, LupIO was entirely implemented as virtual
devices in QEMU, along with corresponding device drivers in Linux,
and we were able to successfully boot a RISC-V based dual-core
virtual machine.

The specifications are available at https://gitlab.com/luplab/lupio.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Applied
computing → Education.
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1 INTRODUCTION
There has always been a difficult tension in teaching between show-
ing real-life products or simplified versions of them. This has been
particularly true in computer architecture, especially at undergrad-
uate level.

Take, for example, the choice of a processor architecture in the
students’ first computer organization course [5]. On one hand, if
instructors teach, say, the Intel x86 assembly language, then they
guarantee that studentswill be learning an immediately transferable
skill, as most commodity computers are based on x86 processors.
However, teaching x86 assembly, with its 40+ years of legacy, is
also guaranteed to be painful—unless simplified [4]—for both the
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instructors and the students. On the other hand, if instructors in-
stead choose a fictitious, much simpler processor such as CUSP [9],
then the learning experience will certainly be a lot easier. However,
it may be more difficult for students to later adapt their newly ac-
quired knowledge to real processors, such as x86 processors. It is
therefore no surprise that many RISC processors have been success-
ful teaching artifacts [6, 11], because they are education-friendly
while concurrently evolving into actual industrial products [15].

While the tension regarding the choice of a processor architec-
ture has been well explored, the choice of I/O devices has not yet
received the same kind of attention. The dilemma is very similar
though, since real-life I/O devices are also often too complicated for
educational purposes. Consider the venerable line of 8250/16550-
compatible universal asynchronous receivers-transmitters (UART)
[13] for simple serial communication, probably some of the most
ubiquitous devices found across computer systems. A UART con-
tains 12 internal registers but only 8 available memory addresses,
so students would need to learn that some registers are multiplexed
behind the same memory addresses using a switch bit. UARTs also
provide many complex features such as the ability to configure the
communication parameters (e.g., parity, speed, number of data bits
being transferred, error control, etc.), FIFO buffers, direct memory
access (DMA) capabilities, etc. Although it could be possible to help
beginner students work with a UART by providing them with a
detailed programming sequence, it is unlikely that they would truly
understand how the device operates and how to properly use it.

This paper introduces LupIO, a comprehensive and open-source
collection of education-friendly I/O devices. This collection defines
the interfaces of the most common devices found in modern RISC-
based computers, and makes it possible to build complete systems
using only LupIO devices, even complex symmetric multiproces-
sor (SMP) systems. LupIO includes devices such as an interrupt
controller, a timer, an interprocessor interrupt controller, a termi-
nal, a generic block device, etc. LupIO devices are intended to be
processor-agnostic, so they should be usable with any processor ar-
chitecture supporting memory-mapped devices (e.g., RISC-V, ARM,
MIPS, etc.). Each device interface is designed to be simple and clear,
with an optimal balance between features and complexity. The reg-
ister maps exposed by the devices are neatly organized by type (e.g.,
data, control, and status) and arranged consistently across devices,
in order to ease their programmability. Developing implementa-
tions of LupIO devices, as well as corresponding device drivers, is
meant to be straightforward.

The paper is organized as follows. First, in section 2, we provide
an overview of existing fictitious devices, including their strengths
and weaknesses. Then, in section 3, we explain the goals and design
choices behind the LupIO collection. In section 4, we introduce the
complete collection of LupIO devices. In section 5, we present a
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complete implementation of LupIO devices, both virtual devices
and device drivers. In section 6, we suggest possible ways LupIO
devices can be used throughout a typical CS curriculum, both at
undergraduate and graduate levels. Finally, we conclude and discuss
our next steps in section 7.

2 RELATEDWORK
Fictitious, simpler I/O devices have existed for a long time, both
for educational purposes and industrial applications. But so far no
existing project has provided the specifications for a comprehensive
collection of educational I/O devices able to fully equip a complete
SMP system.

Educational simulators such as SPIM [12] or MARS [16], only
define one or two memory-mapped I/O devices at most. While
it is usually adequate to illustrate the interactions between soft-
ware and hardware in typical computer organization courses at
the undergraduate level, such simulators cannot be used later in
the curriculum, for example in operating systems courses or more
advanced computer architecture courses.

More advanced simulators, such as System/161 [10] which was
typically developed for operating system courses at the undergrad-
uate level, sometimes provide a more complete collection of virtual
I/O devices. However, in the case of the MIPS-based System/161,
the devices were only designed for this simulator and would not
necessarily work seamlessly with other processor architectures.

Targeting industrial applications, the popular VirtIO project [7]
defines a solid list of virtual devices, which includes a network
device, a block device, a console device, etc. However, these devices
are all strictly I/O oriented and do not include other devices neces-
sary to computer systems, such as an interrupt controller, a timer,
etc. Besides, the project’s goal is focused entirely on simulation
speed and has no educational aspirations. The implementations of
these virtual devices or corresponding OS drivers definitely rivals
real-life devices in terms of complexity, if not more.

Initially developed by Google for their Android emulator, Gold-
fish [8] probably includes the most complete collection of simple
virtual devices, as it includes many typical devices (e.g., interrupt
controller, terminal, timer, etc.). Although these devices were meant
to offer simpler interfaces than realistic ones, the goal was not edu-
cational per se and it sometimes shows. For example, the interface
across devices is not always consistent. Additionally, it is not certain
one can build an entire SMP system using Goldfish devices only,
and there is no generic block device—only a NAND flash device
and a MultiMediaCard (MMC) device, both of which are probably
too complex to teach at undergraduate level.

3 GOALS AND DESIGN CHOICES
The overarching goal of LupIO devices is to provide a collection
of education-friendly I/O devices, which can be used from the
first computer organization course at the undergraduate level up
to advanced parallel programming courses at the graduate level.
Balancing these accessibility and features requirements had deep
impacts on how the device interfaces were designed.

3.1 Collection
The LupIO collection of devices is complete and generic enough to
build a fully functional computer system only using LupIO devices
and based around any education-friendly RISC processor (such as
RISC-V or MIPS32). It includes core devices (such as an interrupt
controller or a timer) as well as general I/O devices (such as a block
device, a real-time clock, or a terminal). All of these devices are
agnostic to the processor architecture used in the system.

As we acknowledge that multicore systems are becoming ubiq-
uitous, parallel programming is also sure to become a pervasive
topic, even at the undergraduate level. LupIO therefore supports
SMP systems.

Real-life devices often offer multiple features which can be tricky
to present to students. For example, interrupt controllers routinely
embed timers and sometimes have support for inter-processor in-
terrupts in SMP contexts. In a computer organization course, in-
troducing such a device just to have students use a single timer
would be too complicated. In LupIO, each device provides only one
service.

3.2 Register map
When the concept of register maps is taught in class, students are
usually presented with a neat classification of registers (e.g., data,
control, status). But most actual device interfaces often combine
control and status registers, which can be confusing. In LupIO, we
define four distinct types of registers:

• Data registers are used to read data from or send data to
the device. Input data registers are usually read-only, while
output data registers are usually write-only.

• Control registers are used to configure the device, or initiate
a specific I/O request. They are usually write-only.

• Status registers are used to provide status information about
the device, or about a specific I/O request. They are usually
read-only.

• Finally, optional configuration registers are used to give
general characteristics about the device.

The set of internal registers is also laid out in a consistent manner
across devices. In LupIO devices, the chosen order is: (1) configura-
tion registers (if any), (2) data registers, (3) control registers, and
(4) status registers. In addition to providing clarity, this ordering
often has advantageous side-effects:

• The ordering often matches exactly how the device is to
be used. Take the block device, for instance: (1) the device
driver starts by reading the configuration register in order to
discover the block device’s properties; when the device driver
wants to initiate a transfer request, (2) it first configures the
data registers and then (3) starts the transfer by writing to
the control register; finally, once the transfer is over, (4) the
device driver reads the status register to acknowledge its
completion status.

• Some devices offer partial functionality directly via the very
first register of their register map. For example, the timer’s
first register provides a monotonic counter. This enables
instructors to either gradually present how certain LupIO
devices work, by revealing the register map step-by-step, or
to simply use devices in their partial versions.
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Figure 1: Register maps of all LupIO devices

The register map of each device does not present holes, even if
the device is not used to the fullest of its capabilities. This design
choice forced two important decisions. The first is that LupIO only
supports a 32-bit physical address space (see subsection below for
discussion about this particular point). The second is that LupIO de-
vices that are compatible with SMP systems present a “multi-device"
interface. This means that the regular mono-processor interface is
simply duplicated as many times as the number of processor cores
in the system. These devices typically have a 16-bytes long register
map so the duplication is regular and holeless.

3.3 Address space
Although 64-bit computer systems are becoming increasingly perva-
sive, they are not education-friendly: working with 32-bit addresses
on a blackboard remains significantly easier than with 64-bit ad-
dresses. Using a 64-bit address space would also be an issue for
LupIO and the design choices presented so far.

Take the block device for instance, which has DMA capability. If
it supported a 64-bit physical address space, then we would need
two data registers for the memory address. The problem is that
in a typical undergraduate-level computer organization course,
instructors often still pick a 32-bit processor architecture for the
sake of simplicity. In that case, it means that students would be
instructed to ignore this second data register, which in our opinion
is not education-friendly. Another possibility would be to move
the data register for the 64-bit address extension, say at the end of
the register map; this way students working with a 32-bit system
would not need to see it. However, it would break our design choice
of consistent register map organization. We therefore decided to
only support a 32-bit address space.

Nonetheless, we do not believe this constraint is much of a lim-
itation. If an instructor opts for a 64-bit processor to teach their
class, it is very likely that the physical memory would be mapped
in the first 4 GiB of the address space anyway. Our block device
would, in that case, still remain compatible.

3.4 Implementation
LupIO devices are designed to be easily implemented as virtual
devices, since instructors are more likely to use simulators or emu-
lators than physical systems. To that effect, LupIO devices do not

present any hardware-specific behaviors (e.g., speed, latency, band-
width, etc.), which would otherwise be complicated to emulate in
software.

Writing device drivers for LupIO is also meant to be a straight-
forward process. As LupIO is meant to be used in operating systems
courses, students should be able to write some device drivers them-
selves.

Finally, it should be possible to implement LupIO devices in
hardware. The interface of each device is therefore agnostic to
the device’s internal implementation, and allows typical behaviors
found in physical devices, such as latency.

4 THE LUPIO COLLECTION OF DEVICES
As of today, the LupIO collection defines the specifications of eight
devices. We present them in this section, loosely organized into
four categories: core devices, I/O devices, system devices, and core
devices for SMP support.

Figure 1 shows the complete register maps of all the LupIO
devices. As per the design goals, the registers are organized by type,
and in a consistent manner. Additionally, the names of registers and
fields are exactly four characters in length and are also consistent
across all devices.

4.1 Core devices
LupIO defines two core devices, which are indispensable to almost
any mono-processor computer system: a timer and a programmable
interrupt controller.

4.1.1 LupIO-TMR. This device provides a real-time counter, and a
configurable timer offering periodic and one-shot modes. Its reg-
ister map counts four 32-bit registers. The first register, TIME, is a
read-only monotonic real-time counter. Its rate is implementation-
dependent, and the value wraps around when it overflows. The
second register, LOAD, is the reload value for the configurable timer.
In one-shot mode, the timer is initialized with the reload value
and then gets monotonically decremented until it expires when
reaching zero. In periodic mode, the timer is automatically reloaded
with the reload value upon expiration. The third register, CTRL,
launches the timer when written to, unless the reload value is zero,
in which case any currently running timer is immediately stopped.



If the IRQE bit is set, then the timer will raise an interrupt request
(IRQ) whenever it expires. If the PRDC bit is set, then the timer is
configured to be periodic instead of one-shot. Finally, the fourth
register, STAT, returns the timer’s status. If the EXPD bit is set, it
means that a timer has expired and has not yet been acknowledged.
Reading this register acknowledges the timer expiration and lowers
the IRQ if it was raised.

4.1.2 LupIO-PIC. This device provides a programmable interrupt
controller, which can manage input IRQs coming from up to 32
sources. In its non-SMP version, its register map counts three 32-bit
registers. The first register, PRIO, returns the number of the highest-
priority, unmasked, and active input IRQ. The highest-priority IRQ
is from source #0, while the lowest-priority IRQ is from source
#31. If no input IRQ is currently active, the register returns value
32. The second register, MASK, allows to mask or unmask each of
the 32 sources individually. If bit #n of MASK is set, then IRQ #n is
unmasked. Finally, the third register, PEND, returns the status of all
active IRQs, regardless of their mask status. If bit #n of PEND is set,
then IRQ #n is active.

4.2 I/O devices
LupIO defines four I/O devices that offer extra, often interactive,
features to the computer system: a terminal, a block device, a real-
time clock, and a random number generator.

4.2.1 LupIO-TTY. This device provides a terminal, which can trans-
mit characters (e.g., to a screen) and receive characters (e.g., from a
keyboard). This device has a single output IRQ, set as a logical OR
between the transmitter and the receiver. Its register map counts
four 32-bit registers. When writing to the first register, WRIT, the
provided character is transmitted. When reading this register, it
returns the last transmitted character and lowers the transmitter
part of the device’s IRQ if it was raised. If the last transmitted char-
acter has already been read, then the returned value is undefined.
The second register, READ, returns the last received character, and
lowers the receiver part of the device’s IRQ if it was raised. If no
character was received, then the returned value is undefined. The
third register, CTRL, configures both transmitter and receiver. If the
WBIT bit is set, then an IRQ will be raised once a character has been
successfully transmitted. If the RBIT bit is set, then an IRQ will
be raised when a character is received. Finally, the fourth register,
STAT, returns the device’s status. If the WBIT bit is set, then the
device is ready to transmit a new character. If the RBIT bit is set,
then the device has received a new character, which can be read
via the READ register.

4.2.2 LupIO-BLK. This device provides a block device that can be
used to add secondary storage to a computer system. Its register
map counts six 32-bit registers. The first register, CONF, gives the
configuration of the device via two 16-bit fields. The upper-half of
the register, field BSP2, is the power of two representing the size
of each block. For example, if this value is 9, then the block size
is 29 = 512 bytes. The lower-half of the register, field NBP2, is the
power of two representing the number of blocks on the device. The
next three registers, NBLK, BLKA, and MEMA, are used to configure a
transfer between the block device and memory. NBLK is the amount
of data to transfer (in blocks), BLKA is the address of the first block,

and MEMA is the memory address of the buffer. Once a transfer
is configured, the fifth register, CTRL, initiates the transfer when
written to. If the IRQE bit is set, then an IRQ will be raised once
the transfer is complete. If the TYPE bit is set, then the transfer is
a write which means that NLBK blocks of data will be transferred
from the memory, starting from address MEMA, to the block device,
starting from block BLKA. If the TYPE bit is unset, then the transfer
is a read, and the data will be transferred from the block device to
the memory. Finally, the sixth register, STAT, returns the current
status of the block device and of the last completed transfer. If the
BUSY bit is set, then a transfer is currently ongoing and none of
the other fields are relevant. The TYPE bit gives the type of the last
completed transfer (write if set, read if unset). If the ERRR bit is set,
then an error was encountered during the last transfer. Reading
STAT lowers the IRQ if it was raised.

4.2.3 LupIO-RTC. This device provides a real-time clock, which is
meant to supply the current date and time to the computer system
in ISO 8601 format. Its register map counts nine 8-bit registers. The
first three registers return the current time: SECD gives the second
between 0 and 60 (where 60 is only used to denote an added leap
second), MINT gives theminute between 0 and 59, and HOUR gives the
hour between 0 and 23. The next four registers return the current
date: DYMO gives the day of the month between 1 and 31, MNTH gives
the month between 1 and 12, while the full year between 0 and 9999
is split between two registers, YEAR which gives the two lowest
digits between 0 and 99 and CENTwhich gives the two highest digits
between 0 and 99. Finally, the last two registers provide further
information about the day: DYWK gives the day of the week between
1 and 7 (beginning with Monday and ending with Sunday), while
DYYR gives the day of the year between 1 and 366 (366 for leap
years).

4.2.4 LupIO-RNG. This device provides a basic random number
generator. Its register map counts four 32-bit registers. The first
register, RAND, returns a random number. If no random number is
available, then the returned value is undefined. The second register,
SEED, allows the user to configure the seed value for a sequence of
random numbers. The third register, CTRL, configures the device.
If the IRQE bit is set, then an IRQ is raised when a new random
number is available. Finally, the fourth register, STAT, gives the
device’s status. If the BUSY bit is set, then no random number is
currently available.

4.3 System devices
LupIO defines one system device, which provides the software with
the ability to halt or reboot the computer system.

4.3.1 LupIO-SYS. This device provides a system controller to the
executed software. Its register map counts two 32-bit registers.
When writing to the first register, HALT, the computer system is
halted. When writing to the second register, REBT, the computer
system is rebooted. The interpretation of the value written in either
register is left to the implementation. For example, if the computer
system is emulated in software, then writing a value val to HALT
could make the emulator call exit(val). This behavior can be very
convenient for automatic testing.



4.4 SMP support
LupIO extends two existing devices and provides one new device
in order to support SMP systems.

4.4.1 LupIO-TMR. This device provides each processor core with
its private timer by simply duplicating the timer register map pre-
sented above into as many instances as there are processor cores.
Since the register map is 16 bytes long, the duplication is both easy
to implement from the device’s point of view, and easy to use from
a device driver’s point of view.

4.4.2 LupIO-PIC. This device is enhanced to accommodate two
typical requirements related to IRQs in SMP systems. The first is that
each processor core typically manages its own IRQs. To accomplish
that, the device’s register map presented above is duplicated into
as many instances as there are processor cores. The second is that
IRQs from the different sources can be routed to any processor
core in the system. For that, the register map of each instance is
increasedwith an additional (fourth) register, ENAB. Each bit of ENAB
represents whether or not the corresponding IRQ source is routed
to the processor core of that instance. If bit #n of ENAB is unset,
then source #n will not be considered at all. Upon reset, the ENAB
register belonging to the first register map instance is initialized
to 0xFFFFFFFF, which means that all IRQs are by default routed
to processor core #0. Finally, since each register map instance is
16 bytes long, the same positive properties as discussed above for
LupIO-TMR apply.

4.4.3 LupIO-IPI. This device provides a way for the kernel exe-
cuting on a given processor core to send physical inter-processor
interrupts (IPIs) to other processor cores, and force them to per-
form certain actions (such as stopping, rescheduling, or executing
a certain kernel function). The register map only counts one reg-
ister, WORD, and is duplicated into as many instances as there are
processor cores. When writing a value into the WORD register of a
certain instance, an IRQ is raised for the corresponding processor
core. When reading the WORD register of a certain instance, its value
is returned and the corresponding IRQ is lowered. If the register
has already been read, then the returned value is undefined.

5 IMPLEMENTATION
In order to test the feasibility of the LupIO devices, we implemented
them as virtual devices in machine emulator QEMU and wrote
corresponding device drivers in the Linux kernel. As shown in
figure 4, we were able to successfully boot a RISC-V based dual-
core virtual machine.

5.1 Virtual devices implementation
QEMU [2] is a free and open source machine emulator. It can em-
ulate plenty of processor architectures (ARM, x86, MIPS, RISC-V,
etc.), and defines many emulation models of I/O devices.

We implemented all the LupIO devices in a self-contained and
architecture-agnostic way in qemu-src/hw/lupio. Although im-
plementing the internal logic behind each LupIO device was fairly
straightforward, most of the difficulty was in figuring out how to
interface them with QEMU’s environment.

The implementation of memory-mapped virtual devices is two-
fold. First, one needs to initialize the device by resetting its internal
registers (if any), defining its memory-mapped region, and attaching
it to the memory bus. Second, one needs to define two functions,
which determine the device’s behavior when its register map is
being accessed, on either a read or a write.

Listing 1 shows the read function’s implementation for LupIO-
RTC. The real-time is first retrieved by calling functions from
QEMU’s environment—returning the host computer’s time—and
then according to which register is being accessed, the proper value
is returned in the format defined by LupIO-RTC’s specifications.

One of LupIO’s goals is that virtual devices should be easy to
implement. While it is hard to formally prove the simplicity of a
code implementation, one possible way is to count its number of
lines of code (as measured by the tool sloccount [17]). Longer pieces
of code usually tend to be more complex than shorter ones. Figure
2 shows, for each type of device, the number of lines of code for
our LupIO virtual device as compared to other devices of the same
type currently defined in QEMU. Our implementations consistently
rank among the shortest1.

Listing 1: Implementation of the read function in LupIO-
RTC’s QEMU virtual device
static uint64_t lupio_rtc_read(void *opaque , hwaddr addr , unsigned int size)

{

uint32_t r = 0;

uint64_t time_nsec;

time_t time_sec;

struct tm time_bd;

/* Get real time in seconds */

time_nsec = qemu_clock_get_ns(rtc_clock );

time_sec = time_nsec / NANOSECONDS_PER_SECOND;

/* Transform into broken -down time representation */

gmtime_r (&time_sec , &time_bd );

/* Determine which register was accessed */

switch (addr) {

case LUPIO_RTC_SECD:

r = time_bd.tm_sec; /* 0-60 (for leap seconds) */

break;

case LUPIO_RTC_MINT:

r = time_bd.tm_min; /* 0-59 */

break;

case LUPIO_RTC_HOUR:

r = time_bd.tm_hour; /* 0-23 */

break;

case LUPIO_RTC_DYMO:

r = time_bd.tm_mday; /* 1-31 */

break;

case LUPIO_RTC_MNTH:

r = time_bd.tm_mon + 1; /* 1-12 */

break;

case LUPIO_RTC_YEAR:

r = (time_bd.tm_year + 1900) % 100; /* 0-99 */

break;

case LUPIO_RTC_CENT:

r = (time_bd.tm_year + 1900) / 100; /* 0-99 */

break;

case LUPIO_RTC_DYWK:

r = 1 + (time_bd.tm_wday + 6) % 7; /* 1-7 (Monday is 1) */

break;

case LUPIO_RTC_DYYR:

r = time_bd.tm_yday + 1; /* 1-366 (for leap years) */

break;

default:

qemu_log_mask(LOG_GUEST_ERROR , "%s:␣Bad␣offset␣"TARGET_FMT_plx"\n",

__func__ , addr);

break;

}

return r;

}

1Note that: since IPI support is generally a part of interrupt controllers, we folded
our LupIO-IPI virtual device into the same category; we were unable to compare
LupIO-SYS as there are no other system controllers available in QEMU.
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5.2 Device drivers implementation
Similarly to the virtual devices implementation in QEMU, all the
device drivers for Linux [14] were implemented in a self-contained
and architecture-agnostic way in linux-src/drivers/lupio. The
implementation of device drivers is usually two-fold. First, the
device driver is initialized if the corresponding device is found
in the platform’s description (e.g., via its device tree). The device
driver then maps the device in memory, and registers itself with
the related Linux subsystem. Second, the device driver’s callback
functions are called when the subsystem wants to interact with the
device.

Listing 2 shows the callback functions for LupIO-RTC’s device
driver. When retrieving the current time and date, the driver per-
forms read memory accesses to the device.

Listing 2: Implementation of the read/write functions in
LupIO-RTC’s Linux device driver
static int lupio_rtc_read_time(struct device *dev , struct rtc_time *tm)

{

struct lupio_rtc_data *rtc = dev_get_drvdata(dev);

void __iomem *base = rtc ->virt_base;

/* Fill out `tm` object */

tm->tm_sec = readb(base + LUPIO_RTC_SECD );

tm->tm_min = readb(base + LUPIO_RTC_MINT );

tm->tm_hour = readb(base + LUPIO_RTC_HOUR );

tm->tm_mday = readb(base + LUPIO_RTC_DYMO );

tm->tm_mon = readb(base + LUPIO_RTC_MNTH) - 1;

tm->tm_year = readb(base + LUPIO_RTC_YEAR)

+ readb(base + LUPIO_RTC_CENT) * 100

- 1900;

tm->tm_wday = readb(base + LUPIO_RTC_DYWK) % 6;

tm->tm_yday = readb(base + LUPIO_RTC_DYYR) - 1;

tm->tm_isdst = -1; /* Unavailable */

return 0;

}

static int lupio_rtc_set_time(struct device *dev , struct rtc_time *tm)

{

return -EOPNOTSUPP;

}

static const struct rtc_class_ops lupio_rtc_ops = {

.read_time = lupio_rtc_read_time ,

.set_time = lupio_rtc_set_time ,

};

Once again, although it would be difficult to prove that these
device drivers are easy to implement, it is possible to measure the
number of lines of code for each of them, and compare this result
to similar Linux device drivers. Figure 3 shows, for each type of
device, the number of lines of code for our LupIO device driver as
compared to other device drivers of the same type currently defined
in Linux. Our drivers consistently rank among the shortest2.
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Figure 3: SLOC per type of Linux device drivers compare to
LupIO-devices

5.3 RISC-V based platform
In order to build an entire virtual machine equipped with LupIO
devices, we chose to use RISC-V [1] as the base processor. RISC-V
supports memory-mapped devices by default, and conveniently
exposes three input IRQs for each type of interrupt: inter-processor
interrupts, timer interrupts, and general external interrupts. Given
this configuration, it is possible to plug in our own core LupIO
devices separately; respectively, LupIO-IPI, LupIO-TMR, and LupIO-
PIC.

In QEMU, we defined a new RISC-V based platform called lupv,
derived from the default RISC-V virt platform. The only hiccup
was to expose the processor core’s IRQ inputs in a generic way, so
that our virtual devices could stay completely processor-agnostic.
In Linux, the RISC-V port also required a few adaptations as the use
of typical RISC-V devices (e.g., CLINT, PLIC) or bootloaders (e.g.,
OpenSBI) was hardcoded in many places. Once the code was made
to be more generic, our LupIO device drivers could be plugged in
seamlessly.

Figure 4 shows a partial but commented trace of our modified
Linux booting on our LupIO-based QEMU virtual machine.

2Note that: since IPI support is generally a part of interrupt controllers, we folded our
LupIO-IPI device driver into the same; there is no specific device driver for LupIO-SYS
as it is supported by default on Linux with a generic driver.



jporquet@laptop:~/lupIO % qemu/build/riscv64-softmmu/qemu-system-riscv64 -nographic -machine lupv -smp 2 \
-bios riscv-dbl/build/dbl -kernel linux/arch/riscv/boot/Image -drive file=disk-img/disk.img,if=none,format=raw \
-initrd initramfs/initramfs.cpio.gz -append "earlycon console=ttyLIO0"
DBL - the dumb bootloader
[    0.000000] OF: fdt: Ignoring memory range 0x80000000 - 0x80200000
[    0.000000] Linux version 5.8.0-rc3-00153-g37d62e4a336a-dirty (jporquet@laptop)
 (riscv64-unknown-linux-gnu-gcc (GCC) 10.2.0, GNU ld (GNU Binutils) 2.35) #116 SMP Tue May 18 16:44:48 PDT 2021
[    0.000000] earlycon: lupio_tty0 at MMIO 0x0000000000107000 (options '')
[    0.000000] printk: bootconsole [lupio_tty0] enabled
...
[    0.060000] clocksource: Switched to clocksource lupio-tmr
[    0.084000] Unpacking initramfs...
[    0.212000] Freeing initrd memory: 1076K
[    0.212000] workingset: timestamp_bits=62 max_order=15 bucket_order=0
[    0.220000] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253)
[    0.220000] io scheduler mq-deadline registered
[    0.220000] io scheduler kyber registered
[    0.296000] LupIO-blk driver, major=254
[    0.296000] lupio_blk 100000.lupio-blk: 65536 512-byte sectors
[    0.308000]  lda: lda1
[    0.316000] printk: console [ttyLIO0] enabled
[    0.316000] printk: console [ttyLIO0] enabled
[    0.316000] printk: bootconsole [lupio_tty0] disabled
[    0.316000] printk: bootconsole [lupio_tty0] disabled
[    0.320000] lupio_rtc 104000.lupio-rtc: registered as rtc0
[    0.320000] lupio_rtc 104000.lupio-rtc: setting system clock to 2021-05-19T00:38:55 UTC (1621384735)
[    0.328000] loop: module loaded
[    0.352000] Freeing unused kernel memory: 164K
[    0.356000] Run /init as init process
Welcome to LupLinux
/bin/sh: can't access tty; job control turned off
/ # cat /proc/interrupts
           CPU0       CPU1
  3:          1          0  lupio-pic   1  lupio_blk
  4:         17          0  lupio-pic   0  lupio_tty

  5:        137         23  RISC-V INTC   5  lupio-tmr

IPI0:         2         14  Rescheduling interrupts
IPI1:       687        919  Function call interrupts
IPI2:         0          0  CPU stop interrupts

/ # mount /dev/lda1 /mnt
/ # cat /mnt/hello
Hello WCAE'21!

/ # date
Wed May 19 00:39:20 UTC 2021

/ # / # xxd -l 16 /dev/hwrng
00000000: ab24 fa24 0f9d ec18 d69d 8af5 1d94 e070  .$.$...........p

/ # poweroff -f
[   68.668000] reboot: Power down
jporquet@laptop:~/lupIO %

LupIO-TTY is first used as 
an early console and then 

as the main console.

LupIO-TMR is configured 
as the clock source and 
delivers frequent IRQs.

LupIO-BLK is discovered at 
boot, and its contents can 
be mounted and accessed 

at runtime.

LupIO-RTC is used to set the 
system's clock, which is 

accessible from userspace.

LupIO-RNG is seen as a 
hardware random 

generator.
LupIO-SYS helps quit the emulator 
from within the emulated software.

LupIO-PIC is connected to 
both CPU cores, but IRQs 
from the block device and 
TTY are configured to be 

delivered to CPU0.

LupIO-IPI enables the 
kernel to interrupt any 

running CPU core.

Figure 4: Linux equipped with LupIO device drivers running on a RISC-V based emulator equipped with LupIO virtual devices

6 POSSIBLE CURRICULUM INTEGRATIONS
The collection of LupIO devices can be used in many typical CS/CE
curriculum courses, both hardware and software focused, and at
both the undergraduate and graduate levels.

6.1 Computer organization
In typical computer organization courses, undergraduate students
usually learn how to program in assembly language and explore
the interactions between software and hardware. Students are gen-
erally directed to write assembly code that can access simple I/O
devices, such as a terminal or a timer. A selection of LupIO devices
is compatible with a gradual exploration of these interactions.

For example, the LupIO-TTY can be introduced to students in
multiple steps. At first, they can start by simply transmitting char-
acters to the first register, WRIT. Then, they can be exposed to the
transmitter and the receiver, using polling to determine when the
device is ready. Finally, they can write proper interrupt handlers in
order to manage the device’s events when enabling the IRQs.

Similarly, only the first register of the LupIO-TMR, TIME, can be
shown to students at first, so that they can retrieve the value of
the monotonic counter. Students can then interact with the entire
device by actually configuring a timer and managing the timer’s
expiration by writing an interrupt handler.

6.2 Computer architecture
In a computer architecture course, students can be tasked with the
actual implementation of a LupIO device. At the undergraduate
level, they may be working with a simple device’s specifications,
such as LupIO-RNG, the random number generator. Depending
on the exact course, it might be the software implementation of
a virtual device, or the hardware implementation of a physical
device using a hardware description language. At the graduate
level, a more complex device’s specifications may be used, such as
LupIO-BLK, the block device.

6.3 Operating systems
In an OS course, instructors can show the implementation of an
OS that runs on a system equipped with LupIO devices since the
corresponding device drivers would be easy to understand. Since
LupIO supports more complex SMP systems, it would also make an
appropriate demonstration platform for more advanced graduate-
level courses.

Students can otherwise be tasked with writing their own device
driver for one of the LupIO devices. Depending on the level of
the course, the device driver can be for a simple device, such as
LupIO-RNG, or for a more complex device, such as LupIO-BLK.



7 CONCLUSION
In this paper, we presented LupIO, a comprehensive and open-
source collection of education-friendly I/O devices. The current
specifications, as well as the implementations of the QEMU virtual
devices and Linux device drivers, are available on GitLab at
https://gitlab.com/luplab/lupio.

In order to become a gold standard for educational I/O devices,
the LupIO collection now needs to be widely advertised to the com-
munity. Increasing the visibility of this project should have two
positive effects. First, receiving feedback and possible external con-
tributions on these specifications would help us address unforeseen
limitations or problems, and help us create a stable version. Second,
it would promote the adoption of LupIO in other projects. We are
already planning to work on the latter by developing models of
LupIO in various education or research oriented projects such as
SPIM, RARS, or gem5 [3].
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