
Evaluating Group Work in (too) Large CS Classes with (too) Few
Resources: An Experience Report

Joël Porquet-Lupine
jporquet@ucdavis.edu

Department of Computer Science
University of California, Davis

Davis, California, USA

Madison Brigham
mlbrigham@ucdavis.edu

Department of Computer Science
University of California, Davis

Davis, California, USA

ABSTRACT
Group work is an excellent way to provide students with more
complex, engaging class projects and help them practicemany of the
professional skills necessary for industry, where large-scale projects
have long been the norm. However, as instructors of large CS classes
are typically unable to determine individual contributions based
on project submissions alone, group work can often cause some
frustration when partners of the same group don’t put in the same
amount of effort yet receive the same score.

In this paper, we describe a bimodal assessment strategy for
group work, which couples end-of-term staff-led oral interviews
with per-project student-reported self and peer evaluations. The
combination of these approaches ensures a thorough and fair eval-
uation of students’ contributions to their groups, and scales up to
large classes with limited instructional staff. The feedback from stu-
dents is very positive, both in terms of agreeing with the narratives
justifying this assessment strategy and finding it to be an effective
solution to fairly grading group work.

CCS CONCEPTS
• Social and professional topics → Student assessment.

KEYWORDS
Teamwork and collaboration; Undergraduate education; Large classes;
Oral assessment; Self and peer assessment
ACM Reference Format:
Joël Porquet-Lupine and Madison Brigham. 2023. Evaluating Group Work
in (too) Large CS Classes with (too) Few Resources: An Experience Report.
In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023), March 15–18, 2023, Toronto, ON, Canada. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569788

1 INTRODUCTION
Group work in CS courses is known to provide numerous benefits
[2, 8]. In the short term, it typically enables students to work on
more complex and interesting class projects than if they worked
alone. It also helps students refine their understanding of the course
material, as they are incentivized to communicate about it with
other students in their respective group. In the long run, group work

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569788

is an indispensable way for students to prepare for their careers
in industry, where large-scale projects have long been the norm.
Students should therefore practice the various required professional
(soft) skills, such as the communication/confrontation of ideas with
others, the optimal allocation of tasks between group members, and
the time management needed to meet deadlines. Group work also
has valuable benefits for instructors of large classes without many
instructional resources (e.g., few teaching assistants). If students
work in groups, they can help each other more efficiently, thus
indirectly reducing the need for staff-provided support (e.g., office
hours, online class forum). Group work also translates directly into
fewer project submissions to grade, which leaves staff more time
to improve the quality of their grading.

Group work, however, comes with its share of challenges [3, 5,
7, 8, 11, 12]. From our five-year experience of running two-student
group projects in 11 offerings of the same CS course, we identified
three major pain points related to group work: the logistics of find-
ing a partner, the cooperation process during the implementation
of the project, and finally, the fair grading of the project, that is, tak-
ing into account each group member’s contribution. The first issue
usually draws only minor complaints from students and can largely
be solved by using light prevention techniques, such as providing
a (virtual) venue where students can meet and form groups, and
imposing an early deadline by which all students must be in a group.
The second and third issues are intimately linked in the sense that
if a group was dysfunctional, then the student who feels wronged
(often due to their partner not doing their fair share of work) will
at least expect that the project will be graded accordingly. Actively
monitoring group dynamics during the relatively short span of a
class project is out of reach in large classes with few instructional
staff, but instructors can mitigate the issue of dysfunctional groups
by preemptively offering guidance on ways to collaborate effec-
tively. In our CS course, we found that the issue of fair grading was
ultimately the most difficult to address and incidentally garnered
the highest number of complaints from students, the most common
frustration being along the lines of "My partner didn’t do anything,
yet we got the same grade." Since project submissions don’t include
reliable evidence of individual contributions, the fair grading of
group members has to involve some active intervention from the
instructional staff.

This paper presents a bimodal assessment strategy for group
work, which combines oral interviews and self and peer evaluations,
and scales to large classes with few instructional resources. Oral in-
terviews are individual assessments conducted by the instructional
staff at the end of the term, and are meant to gauge each student’s
understanding of a selection of their group project submissions.

 

4

https://orcid.org/0000-0003-4634-2877
https://orcid.org/0000-0003-1227-2196
https://doi.org/10.1145/3545945.3569788
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3545945.3569788
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569788&domain=pdf&date_stamp=2023-03-03


SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Joël Porquet-Lupine & Madison Brigham

The self and peer evaluations are completed by students directly
after each project, and are meant to provide insight into each part-
ner’s engagement and contribution to the given project. While both
partners in each group receive the same grade for their project
submission, our bimodal assessment strategy enables additional,
individualized grades. We surveyed students over three offerings
of our course that used this assessment strategy, and they largely
agreed with its narratives and overall effectiveness.

This paper is organized as follows. Section 2 discusses related
work on group work, oral assessments, and peer evaluations. Sec-
tion 3 presents the class settings in which our bimodal assessment
strategy was used. In Sections 4 and 5, we detail the two compo-
nents of our assessment strategy: oral interviews and self and peer
evaluations. We discuss the results from our student survey in Sec-
tion 6. Finally, we conclude and suggest potential next steps in
Section 7.

2 RELATEDWORK
The adoption of group work in CS classes appears to be as old as
the inauguration of CS classes themselves. The ACM "Curriculum
68: Recommendations for academic programs in computer science"
[1] already mentioned group work in laboratory classrooms, and
publications in early ACM SIGCSE conferences [2] advocated for
team projects as an essential part of any CS curriculum at the under-
graduate level. It is generally acknowledged that group work can
be a powerful tool for practicing collaborative and communication
skills, also known as professional skills, which are indispensable
for students to have acquired by the time they graduate. Oakley
et al.[8] even found statistically significant correlations between
agreement that a course had fulfilled its objectives and the use
of student teams in that course. However, as Waite et al.[14] and
Koppe et al.[5] argue, simply introducing group work is often in-
sufficient and must be accompanied by active strategies to foster a
collaborative atmosphere among students.

Anothermeasure that allows students to practice communication
skills is oral assessment. Ohmann [9] and Sabin [10] successfully
used oral assessment to replace typical written exams, usually for
their class final exams. Sabin reports that students found the per-
sonalized, interactive nature of the exam helpful in advancing their
learning and communication skills. On a wider scale, Stratton [13]
argues that oral presentations create individual accountability for
understanding homework solutions, balancing a typical deficiency
of group work while increasing faculty-student interaction. Strat-
ton also mentions that oral presentations are good practice for
situations beyond the classroom, such as technical interviews.

A frequent student concern surrounding group work is the fair
grading of each team member according to their perceived contri-
butions. While oral assessment can help mitigate "freeloading" by
penalizing students who appear not to have contributed much to
their group projects, it is also possible to hear from group members
directly via peer assessment. LeJeune [6] presents a comprehensive
assessment approach for grading individuals in CS group projects;
however, it seems to be limited to relatively small classes. The ap-
proach includes peer and instructor assessments, and factors in the
quality of the contribution in addition to its mere amount. Peer

assessment is, however, not broadly accepted as an adequate ap-
proach. Kennedy [4], for example, raises several potential issues,
such as the reluctance of students to assess their teammates, which
may affect the validity and reliability of the collected data.

3 COURSE SETTINGS
This section presents the Operating Systems course (abbreviated
as CSOS hereafter) for which our bimodal assessment strategy for
evaluating group work was developed.

CSOS is a concept-focused and programming-heavy course that
is required for all students majoring in CS. Students generally take
it at the end of their junior year or beginning of their senior year.
CSOS is offered two to three times a year (our institution is on the
quarter system) and enrolls around 200 students per class. In terms
of instructional staff, we typically receive three teaching assistants
(TAs), each with a 20-hour/week appointment.

Theory Practice Total

Midterm
exam

Final
exam

Three group
projects (equally
weighted)

Group work (oral
interview + self
and peer evalua-
tions)

20% 30% 40% 10% (uncapped) 100%
Table 1: CSOS course grading

As shown in Table 1, the grading for this course covers two main
aspects, theory and practice, each counting for 50% of the students’
final course grades. The theory portion is assessed via written
examinations, typically a midterm exam and a final exam. These
examinations mostly focus on materials seen in class (i.e., lectures
and discussions). The practice portion focuses on three challenging
group projects, each lasting about two weeks, for which students
work in pairs. Students are not allowed to have the same partner
more than twice, so by the end of the term, students will have
worked with either two or three different project partners. The
practice grade is further broken down into two parts.

For the project submissions, students of the same group receive
the same score. Project submissions are partially auto-graded via a
script running various tests, but are also manually reviewed by the
TAs. Manual reviews are designed to give personalized feedback
on the submitted code via inline comments, and assess aspects of
each submission that cannot be auto-graded, such as the quality of
the implementation, the coding style, etc.

On the other hand, oral interviews and self and peer evaluations
are individualized scores, weighted equally. It is important to note
that this individualized part of the practice grade is not capped.
As explained in section 5, students can receive scores over 100%
for the self and peer evaluations if it is reported that they consis-
tently provided more work than their partners. In this case, the
"overflow" is meant to indirectly adjust their (non-individualized)
project submission scores. This stems from the idea that if students
had to provide additional work because of their partners’ lack of
contributions, it is only fair that they would receive a compensating
boost.

While we have taught CSOS 11 times since 2017, this paper
primarily focuses on the four most recent offerings of the course

 

5



Evaluating Group Work in (too) Large CS Classes with (too) Few Resources: An Experience Report SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

(winter quarter 2020, fall quarter 2020, winter quarter 2021, and
winter quarter 2022 –abbreviated asWQ20, FQ20,WQ21, andWQ22
for the remainder of this paper) since they share almost exactly the
same assessment structure.

4 ORAL INTERVIEWS
This section describes the evolution of our oral interview assess-
ment, the first part of our bimodal assessment strategy.

The main purpose of these oral interviews is to assess whether
students are familiar with their project submissions, including parts
that their partner may have written, as well as the underlying
concepts studied in class and applied in the class projects. The
idea is to mimic industry practices, where software developers
are typically expected to fully understand a large codebase, even
parts for which they are not the primary developers. Another, more
indirect, purpose of oral interviews is to hold students who did not
contribute much to their project submissions and therefore cannot
explain the submitted code accountable, since a poor oral interview
will negatively affect their practice grades for the class.

We started using oral interviews right from our first offering
of CSOS, in 2017. At the time, interviews were performed after
every group project during a 10-minute session, and each group
of students was interviewed together but scored individually. This
approach was extremely time-consuming, and interviewing stu-
dents with their group prevented us from accurately assessing them
separately. It was difficult to test students on parts of the code their
partner had implemented, since their partner would often try to
answer on their behalf. Furthermore, the scoring rubric employed
at the time was rudimentary and only had one loosely-defined cri-
terion. As a result, this approach wasn’t satisfactory; almost all the
students scored 90% or more, which was not in line with the other
forms of assessment used in the class, and we would still hear a lot
of frustrations from students about the fair grading of their group
projects.

In its current form, oral interviews are conducted only once, dur-
ing the last week of the term and following the third and last group
project. This last project is completely auto-graded to alleviate the
TAs’ workload. Students are interviewed individually during a 10-
minute session with a TA. The available time slots are announced
in advance and are opened for registration at the same time for
everyone. During their oral interview, each student is quizzed on
two of their three group projects: one that they choose at the time
of their registration, and one picked by the TA during the interview
using a random number generator. Students are typically asked
one or two main questions per project, taken out of a shared bank
of questions written by the instructor, as well as potential follow-
up questions depending on the student’s answers. Within the 10
minutes of the session, we account for one minute of preparation
time, about eight minutes of active interview, and one minute at the
end for the TA to finalize their review. This includes selecting the
adequate items in the scoring rubric and writing a few sentences
about each student’s performance. For a 200-student class and three
20-hour/week TAs, each TA has to interview about 67 students,
therefore representing about 12 hours worth of oral interviews and
thus staying well within their workload.

The improved scoring rubric consists of three criteria, covering
different aspects of the interview. An excerpt is shown in Table 2.
The first criterion, which accounts for 32% of the total score, aims to
measure the student’s overall understanding of the selected projects’
concepts. The second criterion, which accounts for 40% of the score,
assesses the student’s understanding of the code they submitted.
Finally, the last criterion, which accounts for 24% of the score,
addresses the student’s communication and how they formulate
their answers during the interview. (Note that the missing 4% is
from submitting a file on our grading platform.) Each criterion is
evaluated on a 5-level scale, corresponding to different performance
achievements: exemplary (100% of criterion points), accomplished
(~87.5%), developing (~75%), beginning (~62.5%), and unsatisfactory
(~50%). Students who don’t attend their oral interview receive 0%.
The interview process and the complete rubric are shared with
students a few days before oral interviews are scheduled to start to
help them prepare.

Figure 1 presents the grade distributions for the last five offerings
of CSOS (using a standard letter grade scale for better visual clarity).
They show that before implementing the current version of oral
interviews (e.g., fall quarter 2019), most students would receive
100%, and almost all would score at least 90%. With the current
implementation of oral interviews in the last four offerings of the
course, we notice that scores are now well-distributed across the
grading scale and therefore offer a much richer representation of
student performance.

Figure 1: Oral interview grades across multiple terms

5 SELF AND PEER EVALUATIONS
In this section, we present the second part of our bimodal assess-
ment strategy for evaluating group work: self and peer evaluations.

After each project deadline, students are given about a week to
complete an evaluation survey composed of three sections. This
survey aims to measure two facets of the students’ group work
experiences: qualitative aspects for the first two sections and quan-
titative for the last.

The two qualitative sections consist of Likert-scale questions
measuring the students’ engagement in the project, via a compre-
hensive list of professional and technical skills that students are
expected to exhibit while working on a given project with their
partner:

 

6



SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Joël Porquet-Lupine & Madison Brigham

Understanding of concepts Understanding of code Communication

+32 pts Examplary level (A+ – A) +40 pts Exemplary level (A+ – A) +24 pts Exemplary level (A+ – A):
Understanding of the concepts is excel-
lent.

• Concepts covered by projects are per-
fectly understood and can effortlessly
be explained.

Understanding of the code is excellent.

• Submitted code is perfectly understood and can effort-
lessly be explained (even parts that the student didn’t
write themselves). Student barely looks at code, only to
remember very specific details if necessary.

• Student is very comfortable talking about the high-level
design of the code as well as the code’s internals.

• Student understands the limitations of their code and can
discuss them.

Communication is excellent.

• Content:
– Accurate, thorough, and directly on point.
– Central ideas/purposes vividly stated and supported.
– Well-structured sentences in effective sequence.

• Verbal delivery:
– Free of errors in grammar
– Word choices help with clarity.
– Varied and dynamic, enhanced by speech rate, volume,

and tone.
• Non-verbal delivery:

– Eye contact.
– Good posture and appropriate attire.
– Helpful gestures to support presentation.

+28 pts Accomplished level (A – B) +36 pts Accomplished level (A – B) +21 pts Accomplished level (A – B)
Understanding of the concepts suffers
from a couple of important flaws.
• Most of the concepts are well

understood, but difficulty to under-
stand/explain a couple.

Understanding of the code suffers from a couple of impor-
tant flaws.
• Student is very comfortable with most parts of the code,

but has minor difficulties explaining a couple other parts.
Typically needs to refer back to the code.

• Student understands well the high-level design of the
code, but has minor difficulty understanding a couple of
the code details (or vice-versa).

• Student has minor difficulties to see and discuss a couple
of limitations of their code.

Communication is suffers from a couple of important
flaws.
• Content may suffer from occasional and minor lack of

focus, structure, or support.
• Verbal delivery may suffer from occasional and minor

errors in grammar or word choices.
• Non-verbal delivery may suffer from occasional and mi-

nor deficiencies.

+24 pts Developing level (B – C) +32 pts Developing level (B – C) +18 pts Developing level (B – C)
Understanding of the concepts suffers
from a few important flaws.
...

Understanding of the code suffers from a few important
flaws.
...

Communication is suffers from a few important flaws.
...

Table 2: Excerpt of scoring rubric for oral interviews

• Organization: "You had a role in the clerical organization
of your group. For example, you helped define the terms of
your collaboration: how/when/where you should meet, how
you should work together, etc.”

• Communication: "You had a role in the communication of
your group. For example, you helped maintain constant com-
munication with your partner throughout the project.”

• Cooperation: "You were willing to listen and respect the ideas
of your partner, and discuss the work distribution. For example,
you would not try to always impose your way of doing things.”

• Attitude: "You showed a positive and enthusiastic attitude, and
it was pleasant to work with you.”

• Contribution of ideas: "You contributed ideas to the project
in terms of how to tackle the assignment, structure the code,
build certain algorithms, etc.”

• Contribution of code: "You participated in the programming
aspect of the project.”

Students respond to each question on a 4-point scale, ranging
from Strongly agree to Strongly disagree. A neutral option is ex-
cluded to prevent students from answering passively. In the first
section of the evaluation survey, students have to assess their own
engagement within the group project, while in the second section,
they assess their partner’s engagement. This order is purposeful, as
we want students to take the time to reflect on their own engage-
ment before they evaluate their partner’s.

The last section of the survey asks students to give a rough
quantitative estimate of each partner’s contribution to the project.
There are only five options, as the goal of this section is to capture
pronounced trends in the work balance of each group, rather than
an exact measure:

• 0% — 100%: "Your partner did (almost) everything while you
did (almost) nothing”

• 25% — 75%: "Your partner contributed substantially more than
you”

• 50%— 50%: "You and your partner contributed (almost) equally”
• 75% — 25%: "You contributed substantially more than your
partner”

• 100% — 0%: "You did (almost) everything while your partner
did (almost) nothing”

For the purpose of scoring, each option in this quantitative section
is transformed into a linear score numbered from 0 to 1, by steps of
0.25.

If a student does not complete their evaluation survey after a
project, one is automatically filled out on their behalf. For the two
qualitative sections, their engagement is automatically set to the
lowest scores, while their partner’s engagement is copied directly
from their partner’s own self-reporting (as to avoid triggering any
positive or negative deviations –see below). For the quantitative
section, their contribution is derived from what their partner has
reported. If their partner didn’t fill out their evaluation survey
either, the contribution is automatically set to 0.5 for both students.

At the end of each project evaluation, we have a total of 14 data
points per student: 12 data points for engagement (six from the
student via their self-evaluation and six from their partner via their
peer evaluation) and two data points for contribution (similarly,
one from the student and one from their partner). We average these
pairs of data points and also determine two deviation scores: one for
engagement and one for contribution. A deviation score is meant to
capture the potential variation between what a student reported in
their self-evaluation versus what their partner reported about them.

 

7



Evaluating Group Work in (too) Large CS Classes with (too) Few Resources: An Experience Report SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

A positive deviation implies that a student may have inflated their
self-reporting, while a negative deviation indicates that a student
may have underestimated it. One can view deviation scores as an
"inverted trust factor”.

At the end of the term, we average pairs of data points across all
projects. This leaves us with an average engagement score and an
average contribution score. The deviation scores across all projects
are also averaged, giving two deviation scores which are respec-
tively used to adjust the engagement and the contribution scores of
each student. A positive deviation is directly subtracted from the
corresponding average to penalize students who inflated their self-
reported performance. A negative deviation is first divided by two,
and its absolute value is added to the corresponding average, there-
fore providing a reasonable boost to students who underestimated
their self-reported performance.

The adjusted engagement and contribution scores are finally
combined to produce an overall group work score, with the engage-
ment score counting for 40% and the contribution score counting
for 60%. These group work scores are not capped at 100%, especially
since contribution scores can be over 0.5 (which represents a full
mark for contribution) if it was reported that a student had con-
tributed more than their partners. The idea is to reward students
who provided more than their expected share on some projects.

Table 3 shows a complete example for a fictitious student. As
you can see, this student slightly under-estimated their engagement
for Project #1 (deviation of -0.33) and largely over-estimated it for
Project #2 (deviation of 1.33), compared to what their partner(s)
reported. In terms of actual contribution, they contributed as much
as their partner for Project #1, contributed more than their partner
for Project #2 (in agreement with what their partner reported), and
underestimated their contribution for Project #3. Based on these
data points, it appears that this student contributed more than their
expected share across all projects, which is why their final group
work grade adds up to over 100%, thus giving them a small boost
for their practice grade.

The main purpose of these evaluations is to offer students the
opportunity to provide meaningful feedback regarding the dynamic
of their group, and hold both themselves and their partner account-
able. As with oral interviews, the idea comes from existing industry
practices, where regular self and peer reviews are common. Multi-
ple times during the term, we strongly encourage students to talk
to their partner before completing their evaluations, especially in
situations where they may not have contributed equally, in order
to avoid the negative effects of a positive deviation.

When looking at statistics from the four most recent course
offerings that have adopted this group work evaluation method,
displayed in Table 4, we generally observe that students are engaged
in their group work and contribute equally to projects. Deviations
are rather small, which suggests students are not trying to game
the system. Interestingly, deviations have steadily decreased from
one course offering to the next.

Once the staff sets up a generic self and peer evaluation sur-
vey, collecting evaluations from students throughout the term is
straightforward. Then, using properly formatted spreadsheets, pro-
cessing the evaluations at the end of the term may take a couple of
hours, but it easily scales to any number of students.

6 STUDENT SURVEY
In order to collect student input about this bimodal assessment
strategy used in our CSOS course, we developed a short survey1.
The survey was set to be completely anonymous and was released
in November 2021 to the 590 students who had taken CSOS in
WQ20, FQ20, and WQ21. While we had 98 total respondents begin
the survey (i.e., 16% of the contacted students), our questions (all
optional) received between 77 and 90 answers.

In our survey, we wanted to mainly clarify two aspects: whether
students agreed with our narratives around group work and our
bimodal assessment strategy (Q1, Q2, Q4), and whether they agreed
with our strategy’s actual effectiveness (Q3, Q5). The five survey
questions are listed below.
Q1. I agree with the narrative that group work is unavoidable in

CS. [narrative]
Q2. Oral interviews mimic how you may be held accountable in

the workplace (e.g., having to explain work that your entire
team will have produced). [narrative]

Q3. Oral interviews are an effective solution to fairly grading
group work. [effectiveness]

Q4. Group work evaluations mimic how coworkers may pro-
vide periodic reviews of themselves and one another in the
workplace. [narrative]

Q5. Group work evaluations are an effective solution to fairly
grading group work. [effectiveness]

Students selected their responses to each question from a 4-point
Likert scale, ranging from Strongly agree to Strongly disagree. Once
again, a neutral point was not offered to encourage students to make
an active choice in providing either positive or negative feedback.

Q1

Q2

Q3

Q4

Q5

0% 25% 50% 75%

Strongly agree Somewhat agree Somewhat disagree Strongly disagree

Figure 2: Student survey results

As we can see from Figure 2, almost all students strongly agree
with the underlying premise of this study, in that group work is
and will continue to be an integral part of their CS education and
career (Q1). For our bimodal assessment strategy, students largely
agree with both justification narratives (Q2 and Q4) and the claims
that our assessment strategy represents effective solutions to fairly
grading group work (Q3 and Q5).

7 CONCLUSION
In this paper, we described a bimodal assessment strategy for group
work, which couples end-of-term staff-led oral interviews with
per-project student-reported self and peer evaluations. The combi-
nation of these approaches ensures a thorough and fair evaluation
1Note that this study’s protocol, which included the student survey, were examined
by our Institutional Review Board and determined not to require a review.

 

8



SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada. Joël Porquet-Lupine & Madison Brigham

Engagement (40%) Contribution (60%)
Organization Communication Cooperation Attitude Contribution

of ideas
Contribution
of code

Engagement
average

Engagement
deviation

Project
contribution

Contribution
deviation

Project #1: Self
evaluation

4 4 4 4 3 3 3.66 3.66 - 4 = -0.33 0.5 0.5 - 0.5 = 0
Project #1: Peer
evaluation

4 4 4 4 4 4 4 0.5

Project #2: Self
evaluation

4 4 4 4 4 4 4 4 - 2.66 = 1.33 0.75 0.75 - 0.75 = 0
Project #2: Peer
evaluation

3 2 2 2 3 4 2.66 0.75

Project #3: Self
evaluation

4 4 4 4 4 4 4 4 - 4 = 0 0.5 0.5 - 0.75 = -0.25
Project #3: Peer
evaluation

4 4 4 4 4 4 4 0.75

Raw
averages

3.72 0.33 0.625 -0.0833

Adjusted scores 3.72 - 0.33 = 3.39
3.39/4*100 = 84.74%

0.625 + (0.0833/2) = 0.66665
0.66665/0.5*100 = 133.33%

Grade 84.74*0.4 + 133.33*0.6 = 113.90%
Table 3: Self and peer evaluations grading example for fictitious student

Engagement Contribution Final Score Average
Term Score (out of 4) Deviation Adjusted Score Score (out of 1) Deviation Adjusted Score Grade
WQ20 3.61 0.05 88.01 0.49 0.03 89.90 89.15
FQ20 3.60 0.04 87.95 0.48 0.02 89.69 88.99
WQ21 3.62 0.03 88.71 0.48 0.01 94.02 91.90
WQ22 3.62 -0.02 89.06 0.48 0.01 92.37 91.05
Average 3.61 0.03 88.43 0.48 0.02 91.50 90.27

Table 4: Self and peer evaluation statistics across multiple terms

of students’ contributions to their groups, and scales up to large
classes with limited instructional staff. The feedback from students
is very positive, both in terms of agreeing with the narratives jus-
tifying this assessment strategy and finding it to be an effective
solution to fairly grading group work.

As instructors, we observed a noticeable decrease in the num-
ber of complaints from students about the fairness of group work
grading. It seems like our per-project self and peer evaluations
do provide a welcomed outlet for those who want to hold a non-
contributing partner accountable. However, this strategy does not
solve the problem of dysfunctional groups during the span of a
project, which now remains the major source of frustrations for the
affected students. Unfortunately, this issue is incredibly challeng-
ing to address since actively monitoring dozens of groups in large
classes with few instructional staff doesn’t appear within reach.

A potential next step we would like to explore regarding self
and peer evaluations is the possibility of computing an "impact
score” for each student, based on their cumulative deviations. This
could be used in a feedback loop to post-process the impact of
their scoring on their partners’ group work grade. It unfortunately
happens that some students are both uncooperative and dishonest,
so if a student’s impact score is low, then their self and peer evalua-
tions would be given less weight compared to what their partners
reported.

Group work in CS classes will likely never be completely fair,
but we believe that the presented strategy helps mitigate some of
its most prominent challenges.

ACKNOWLEDGEMENT
We thank Prof. Christopher Nitta for his valuable feedback on this
paper.

REFERENCES
[1] William F. Atchison, Samuel D. Conte, John W. Hamblen, Thomas E. Hull,

Thomas A. Keenan, William B. Kehl, Edward J. McCluskey, Silvio O. Navarro,
Werner C. Rheinboldt, Earl J. Schweppe, William Viavant, and David M. Young.
1968. Curriculum 68: Recommendations for Academic Programs in Computer
Science: A Report of the ACM Curriculum Committee on Computer Science.
Commun. ACM 11, 3 (mar 1968), 151–197. https://doi.org/10.1145/362929.362976

[2] John H. Crenshaw. 1978. Team Projects in the Undergraduate Curriculum. In
Papers of the SIGCSE/CSA Technical Symposium on Computer Science Education
(Detroit, Michigan) (SIGCSE ’78). Association for Computing Machinery, New
York, NY, USA, 203–205. https://doi.org/10.1145/990555.990625

[3] Helen Drury, Judy Kay, and Warren Losberg. 2003. Student Satisfaction with
Groupwork in Undergraduate Computer Science: Do Things Get Better?. In
Proceedings of the Fifth Australasian Conference on Computing Education - Volume
20 (Adelaide, Australia) (ACE ’03). Australian Computer Society, Inc., AUS, 77–85.

[4] Geoffrey J. Kennedy. 2005. Peer-Assessment in Group Projects: Is It Worth It?. In
Proceedings of the 7th Australasian Conference on Computing Education - Volume
42 (Newcastle, New South Wales, Australia) (ACE ’05). Australian Computer
Society, Inc., AUS, 59–65.

[5] Christian Köppe, Marko van Eekelen, and Stijn Hoppenbrouwers. 2015. Im-
proving Student Group Work with Collaboration Patterns: A Case Study. In
Proceedings of the 37th International Conference on Software Engineering - Volume
2 (Florence, Italy) (ICSE ’15). IEEE Press, 303–306.

[6] Noel LeJeune. 2006. Assessment of Individuals on CS Group Projects. J. Comput.
Sci. Coll. 22, 1 (oct 2006), 231–237.

[7] Torben Lorenzen, John Santore, David Glassman, and Juozas Baltikauskas. 2007.
No Slacker on Team Programming Projects. SIGCSE Bull. 39, 4 (dec 2007), 117–118.
https://doi.org/10.1145/1345375.1345428

[8] Barbara A. Oakley, Darrin M. Hanna, Zenon Kuzmyn, and Richard M. Felder. 2007.
Best Practices Involving Teamwork in the Classroom: Results From a Survey of
6435 Engineering Student Respondents. IEEE Transactions on Education 50, 3
(2007), 266–272. https://doi.org/10.1109/TE.2007.901982

[9] Peter Ohmann. 2019. An Assessment of Oral Exams in Introductory CS. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 613–619. https://doi.org/10.1145/3287324.3287489

 

9

https://doi.org/10.1145/362929.362976
https://doi.org/10.1145/990555.990625
https://doi.org/10.1145/1345375.1345428
https://doi.org/10.1109/TE.2007.901982
https://doi.org/10.1145/3287324.3287489


Evaluating Group Work in (too) Large CS Classes with (too) Few Resources: An Experience Report SIGCSE ’23, March 15–18, 2023, Toronto, ON, Canada.

[10] Mihaela Sabin, Karen H. Jin, and Adrienne Smith. 2021. Oral Exams in Shift
to Remote Learning. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 666–672. https://doi.org/10.1145/
3408877.3432511

[11] Thomas J. Scott, Ralph B. Bisland, Lee H. Tichenor, and James H. Cross. 1994.
Handling Interpersonal Issues for Student Team Projects. In Proceedings of the
Twenty-Fifth SIGCSE Symposium on Computer Science Education (Phoenix, Ari-
zona, USA) (SIGCSE ’94). Association for Computing Machinery, New York, NY,
USA, 397–398. https://doi.org/10.1145/191029.191205

[12] Harold H. Smith and Debra L. Smarkusky. 2005. Competency Matrices for Peer
Assessment of Individuals in Team Projects. In Proceedings of the 6th Conference
on Information Technology Education (Newark, NJ, USA) (SIGITE ’05). Association

for Computing Machinery, New York, NY, USA, 155–162. https://doi.org/10.
1145/1095714.1095751

[13] John A. Stratton. 2021. Enhancing Faculty-Student Interaction in an Under-
graduate Algorithms Course Through Group Oral Presentations. In Computing
Education Practice 2021 (Durham, United Kingdom) (CEP ’21). Association for
Computing Machinery, New York, NY, USA, 25–28. https://doi.org/10.1145/
3437914.3437975

[14] William M. Waite, Michele H. Jackson, Amer Diwan, and Paul M. Leonardi. 2004.
Student Culture vs Group Work in Computer Science. In Proceedings of the 35th
SIGCSE Technical Symposium on Computer Science Education (Norfolk, Virginia,
USA) (SIGCSE ’04). Association for Computing Machinery, New York, NY, USA,
12–16. https://doi.org/10.1145/971300.971308

 

10

https://doi.org/10.1145/3408877.3432511
https://doi.org/10.1145/3408877.3432511
https://doi.org/10.1145/191029.191205
https://doi.org/10.1145/1095714.1095751
https://doi.org/10.1145/1095714.1095751
https://doi.org/10.1145/3437914.3437975
https://doi.org/10.1145/3437914.3437975
https://doi.org/10.1145/971300.971308

	Abstract
	1 Introduction
	2 Related work
	3 Course settings
	4 Oral interviews
	5 Self and peer evaluations
	6 Student survey
	7 Conclusion
	References



